Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dissection of glutathione conjugate turnover in yeast.

Identifieur interne : 001E23 ( Main/Exploration ); précédent : 001E22; suivant : 001E24

Dissection of glutathione conjugate turnover in yeast.

Auteurs : Jana Wünschmann [Allemagne] ; Matthias Krajewski ; Thomas Letzel ; Eva M. Huber ; Alexander Ehrmann ; Erwin Grill ; Klaus J. Lendzian

Source :

RBID : pubmed:19897216

Descripteurs français

English descriptors

Abstract

Xenobiotics are widely used as pesticides. The detoxification of xenobiotics frequently involves conjugation to glutathione prior to compartmentalization and catabolism. In plants, degradation of glutathione-S-conjugates is initiated either by aminoterminal or carboxyterminal amino acid cleavage catalyzed by a gamma-glutamyl transpeptidase and phytochelatin synthase, respectively. In order to establish yeast as a model system for the analysis of the plant pathway, we used monochlorobimane as a model xenobiotic in Saccharomyces cerevisiae and mutants thereof. The catabolism of monochlorobimane is initiated by conjugation to form glutathione-S-bimane, which is then turned over into a gamma-GluCys-bimane conjugate by the vacuolar serine carboxypeptidases CPC and CPY. Alternatively, the glutathione-S-bimane conjugate is catabolized by the action of the gamma-glutamyl transpeptidase Cis2p to a CysGly-conjugate. The turnover of glutathione-S-bimane was impaired in yeast cells deficient in Cis2p and completely abolished by the additional inactivation of CPC and CPY in the corresponding triple knockout. Inducible expression of the Arabidopsis phytochelatin synthase AtPCS1 in the triple knockout resulted in the turnover of glutathione-S-bimane to the gamma-GluCys-bimane conjugate as observed in plants. Challenge of AtPCS1-expressing yeast cells with zinc, cadmium, and copper ions, which are known to activate AtPCS1, enhanced gamma-GluCys-bimane accumulation. Thus, initial catabolism of glutathione-S-conjugates is similar in plants and yeast, and yeast is a suitable system for a study of enzymes of the plant pathway.

DOI: 10.1016/j.phytochem.2009.09.034
PubMed: 19897216


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dissection of glutathione conjugate turnover in yeast.</title>
<author>
<name sortKey="Wunschmann, Jana" sort="Wunschmann, Jana" uniqKey="Wunschmann J" first="Jana" last="Wünschmann">Jana Wünschmann</name>
<affiliation wicri:level="4">
<nlm:affiliation>Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, D-85354 Freising, Germany. jana.wuenschmann@wzw.tum.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, D-85354 Freising</wicri:regionArea>
<wicri:noRegion>85354 Freising</wicri:noRegion>
<orgName type="university">Université technique de Munich</orgName>
<placeName>
<settlement type="city">Munich</settlement>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Krajewski, Matthias" sort="Krajewski, Matthias" uniqKey="Krajewski M" first="Matthias" last="Krajewski">Matthias Krajewski</name>
</author>
<author>
<name sortKey="Letzel, Thomas" sort="Letzel, Thomas" uniqKey="Letzel T" first="Thomas" last="Letzel">Thomas Letzel</name>
</author>
<author>
<name sortKey="Huber, Eva M" sort="Huber, Eva M" uniqKey="Huber E" first="Eva M" last="Huber">Eva M. Huber</name>
</author>
<author>
<name sortKey="Ehrmann, Alexander" sort="Ehrmann, Alexander" uniqKey="Ehrmann A" first="Alexander" last="Ehrmann">Alexander Ehrmann</name>
</author>
<author>
<name sortKey="Grill, Erwin" sort="Grill, Erwin" uniqKey="Grill E" first="Erwin" last="Grill">Erwin Grill</name>
</author>
<author>
<name sortKey="Lendzian, Klaus J" sort="Lendzian, Klaus J" uniqKey="Lendzian K" first="Klaus J" last="Lendzian">Klaus J. Lendzian</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:19897216</idno>
<idno type="pmid">19897216</idno>
<idno type="doi">10.1016/j.phytochem.2009.09.034</idno>
<idno type="wicri:Area/Main/Corpus">001E68</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E68</idno>
<idno type="wicri:Area/Main/Curation">001E68</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001E68</idno>
<idno type="wicri:Area/Main/Exploration">001E68</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dissection of glutathione conjugate turnover in yeast.</title>
<author>
<name sortKey="Wunschmann, Jana" sort="Wunschmann, Jana" uniqKey="Wunschmann J" first="Jana" last="Wünschmann">Jana Wünschmann</name>
<affiliation wicri:level="4">
<nlm:affiliation>Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, D-85354 Freising, Germany. jana.wuenschmann@wzw.tum.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, D-85354 Freising</wicri:regionArea>
<wicri:noRegion>85354 Freising</wicri:noRegion>
<orgName type="university">Université technique de Munich</orgName>
<placeName>
<settlement type="city">Munich</settlement>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Krajewski, Matthias" sort="Krajewski, Matthias" uniqKey="Krajewski M" first="Matthias" last="Krajewski">Matthias Krajewski</name>
</author>
<author>
<name sortKey="Letzel, Thomas" sort="Letzel, Thomas" uniqKey="Letzel T" first="Thomas" last="Letzel">Thomas Letzel</name>
</author>
<author>
<name sortKey="Huber, Eva M" sort="Huber, Eva M" uniqKey="Huber E" first="Eva M" last="Huber">Eva M. Huber</name>
</author>
<author>
<name sortKey="Ehrmann, Alexander" sort="Ehrmann, Alexander" uniqKey="Ehrmann A" first="Alexander" last="Ehrmann">Alexander Ehrmann</name>
</author>
<author>
<name sortKey="Grill, Erwin" sort="Grill, Erwin" uniqKey="Grill E" first="Erwin" last="Grill">Erwin Grill</name>
</author>
<author>
<name sortKey="Lendzian, Klaus J" sort="Lendzian, Klaus J" uniqKey="Lendzian K" first="Klaus J" last="Lendzian">Klaus J. Lendzian</name>
</author>
</analytic>
<series>
<title level="j">Phytochemistry</title>
<idno type="eISSN">1873-3700</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aminoacyltransferases (genetics)</term>
<term>Aminoacyltransferases (metabolism)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Bridged Bicyclo Compounds (metabolism)</term>
<term>Dipeptides (metabolism)</term>
<term>Gene Expression (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Glutathione (analogs & derivatives)</term>
<term>Glutathione (metabolism)</term>
<term>Metals, Heavy (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Pyrazoles (metabolism)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Xenobiotics (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aminoacyltransferases (génétique)</term>
<term>Aminoacyltransferases (métabolisme)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Composés bicycliques pontés (métabolisme)</term>
<term>Dipeptides (métabolisme)</term>
<term>Expression des gènes (MeSH)</term>
<term>Glutathion (analogues et dérivés)</term>
<term>Glutathion (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Métaux lourds (MeSH)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Pyrazoles (métabolisme)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Xénobiotique (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aminoacyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aminoacyltransferases</term>
<term>Bridged Bicyclo Compounds</term>
<term>Dipeptides</term>
<term>Glutathione</term>
<term>Plant Proteins</term>
<term>Pyrazoles</term>
<term>Xenobiotics</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Glutathion</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aminoacyltransferases</term>
<term>Arabidopsis</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Aminoacyltransferases</term>
<term>Arabidopsis</term>
<term>Composés bicycliques pontés</term>
<term>Dipeptides</term>
<term>Glutathion</term>
<term>Protéines végétales</term>
<term>Pyrazoles</term>
<term>Saccharomyces cerevisiae</term>
<term>Xénobiotique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression</term>
<term>Genes, Plant</term>
<term>Metals, Heavy</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Expression des gènes</term>
<term>Gènes de plante</term>
<term>Métaux lourds</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Xenobiotics are widely used as pesticides. The detoxification of xenobiotics frequently involves conjugation to glutathione prior to compartmentalization and catabolism. In plants, degradation of glutathione-S-conjugates is initiated either by aminoterminal or carboxyterminal amino acid cleavage catalyzed by a gamma-glutamyl transpeptidase and phytochelatin synthase, respectively. In order to establish yeast as a model system for the analysis of the plant pathway, we used monochlorobimane as a model xenobiotic in Saccharomyces cerevisiae and mutants thereof. The catabolism of monochlorobimane is initiated by conjugation to form glutathione-S-bimane, which is then turned over into a gamma-GluCys-bimane conjugate by the vacuolar serine carboxypeptidases CPC and CPY. Alternatively, the glutathione-S-bimane conjugate is catabolized by the action of the gamma-glutamyl transpeptidase Cis2p to a CysGly-conjugate. The turnover of glutathione-S-bimane was impaired in yeast cells deficient in Cis2p and completely abolished by the additional inactivation of CPC and CPY in the corresponding triple knockout. Inducible expression of the Arabidopsis phytochelatin synthase AtPCS1 in the triple knockout resulted in the turnover of glutathione-S-bimane to the gamma-GluCys-bimane conjugate as observed in plants. Challenge of AtPCS1-expressing yeast cells with zinc, cadmium, and copper ions, which are known to activate AtPCS1, enhanced gamma-GluCys-bimane accumulation. Thus, initial catabolism of glutathione-S-conjugates is similar in plants and yeast, and yeast is a suitable system for a study of enzymes of the plant pathway.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19897216</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-3700</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>71</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Phytochemistry</Title>
<ISOAbbreviation>Phytochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Dissection of glutathione conjugate turnover in yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>54-61</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.phytochem.2009.09.034</ELocationID>
<Abstract>
<AbstractText>Xenobiotics are widely used as pesticides. The detoxification of xenobiotics frequently involves conjugation to glutathione prior to compartmentalization and catabolism. In plants, degradation of glutathione-S-conjugates is initiated either by aminoterminal or carboxyterminal amino acid cleavage catalyzed by a gamma-glutamyl transpeptidase and phytochelatin synthase, respectively. In order to establish yeast as a model system for the analysis of the plant pathway, we used monochlorobimane as a model xenobiotic in Saccharomyces cerevisiae and mutants thereof. The catabolism of monochlorobimane is initiated by conjugation to form glutathione-S-bimane, which is then turned over into a gamma-GluCys-bimane conjugate by the vacuolar serine carboxypeptidases CPC and CPY. Alternatively, the glutathione-S-bimane conjugate is catabolized by the action of the gamma-glutamyl transpeptidase Cis2p to a CysGly-conjugate. The turnover of glutathione-S-bimane was impaired in yeast cells deficient in Cis2p and completely abolished by the additional inactivation of CPC and CPY in the corresponding triple knockout. Inducible expression of the Arabidopsis phytochelatin synthase AtPCS1 in the triple knockout resulted in the turnover of glutathione-S-bimane to the gamma-GluCys-bimane conjugate as observed in plants. Challenge of AtPCS1-expressing yeast cells with zinc, cadmium, and copper ions, which are known to activate AtPCS1, enhanced gamma-GluCys-bimane accumulation. Thus, initial catabolism of glutathione-S-conjugates is similar in plants and yeast, and yeast is a suitable system for a study of enzymes of the plant pathway.</AbstractText>
<CopyrightInformation>2009 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wünschmann</LastName>
<ForeName>Jana</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, D-85354 Freising, Germany. jana.wuenschmann@wzw.tum.de</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krajewski</LastName>
<ForeName>Matthias</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Letzel</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huber</LastName>
<ForeName>Eva M</ForeName>
<Initials>EM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ehrmann</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grill</LastName>
<ForeName>Erwin</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lendzian</LastName>
<ForeName>Klaus J</ForeName>
<Initials>KJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>11</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Phytochemistry</MedlineTA>
<NlmUniqueID>0151434</NlmUniqueID>
<ISSNLinking>0031-9422</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001643">Bridged Bicyclo Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004151">Dipeptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019216">Metals, Heavy</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011720">Pyrazoles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015262">Xenobiotics</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C080120">glutathione-bimane</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>76421-73-3</RegistryNumber>
<NameOfSubstance UI="C059597">monochlorobimane</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.-</RegistryNumber>
<NameOfSubstance UI="D019881">Aminoacyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.15</RegistryNumber>
<NameOfSubstance UI="C093784">glutathione gamma-glutamylcysteinyltransferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>M984VJS48P</RegistryNumber>
<NameOfSubstance UI="C017341">gamma-glutamylcysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019881" MajorTopicYN="N">Aminoacyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001643" MajorTopicYN="N">Bridged Bicyclo Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004151" MajorTopicYN="N">Dipeptides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019216" MajorTopicYN="N">Metals, Heavy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011720" MajorTopicYN="N">Pyrazoles</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015262" MajorTopicYN="N">Xenobiotics</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>06</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2009</Year>
<Month>09</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>09</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19897216</ArticleId>
<ArticleId IdType="pii">S0031-9422(09)00424-5</ArticleId>
<ArticleId IdType="doi">10.1016/j.phytochem.2009.09.034</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bavière</li>
<li>District de Haute-Bavière</li>
</region>
<settlement>
<li>Munich</li>
</settlement>
<orgName>
<li>Université technique de Munich</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Ehrmann, Alexander" sort="Ehrmann, Alexander" uniqKey="Ehrmann A" first="Alexander" last="Ehrmann">Alexander Ehrmann</name>
<name sortKey="Grill, Erwin" sort="Grill, Erwin" uniqKey="Grill E" first="Erwin" last="Grill">Erwin Grill</name>
<name sortKey="Huber, Eva M" sort="Huber, Eva M" uniqKey="Huber E" first="Eva M" last="Huber">Eva M. Huber</name>
<name sortKey="Krajewski, Matthias" sort="Krajewski, Matthias" uniqKey="Krajewski M" first="Matthias" last="Krajewski">Matthias Krajewski</name>
<name sortKey="Lendzian, Klaus J" sort="Lendzian, Klaus J" uniqKey="Lendzian K" first="Klaus J" last="Lendzian">Klaus J. Lendzian</name>
<name sortKey="Letzel, Thomas" sort="Letzel, Thomas" uniqKey="Letzel T" first="Thomas" last="Letzel">Thomas Letzel</name>
</noCountry>
<country name="Allemagne">
<region name="Bavière">
<name sortKey="Wunschmann, Jana" sort="Wunschmann, Jana" uniqKey="Wunschmann J" first="Jana" last="Wünschmann">Jana Wünschmann</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E23 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E23 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19897216
   |texte=   Dissection of glutathione conjugate turnover in yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19897216" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020